In stock: Growth Differentiation Factor 11 (GDF11) BMP-11 anti-aging research peptide – 20 mcg


5 in stock

SKU: gdf11 Category: Tags: , ,


Growth differentiation factor 11 – 20 mcg / 20 ul (20 micrograms)

(GDF11) also known as bone morphogenetic protein 11 (BMP-11) is a protein that in humans is encoded by the growth differentiation factor 11 gene.

Please note that the picture is for illustration only. The product may be in a different kind of vial.

Peptide Description Synthetic peptide taken within amino acid region 60-100 on human BMP11/GDF11 protein.

research grade, made in USA in a USDA inspected antibodies lab, in a plastic vial

Uniprot #  


Overview Secreted signal that acts globally to specify positional identity along the anterior/posterior axis during development.
Molecular Function Cytokine; Growth Factor; Neurogenesis
Subcellular Location Secreted
Structure Homodimer; Disulfide linked

Animal and Human studies

Systemic GDF11 treatment improves vasculature in the hippocampus and cortex of old mice resulting in enhanced neurogenesis. This paper suggests that exogenous GDF11 may be effective in reversing stroke damage and vascular dementia in humans. [11]

Loss of GDF11 Shortens Telomere Length by Down Regulating Telomerase Activity [12]

GDF11 attenuates the senescence of ovarian and testicular cells, and contributes to the recovery of ovarian and testicular endocrine functions. Moreover, GDF11 could rescue the diminished ovarian reserve in female mice and enhance the activities of marker enzymes of testicular function (SDH and G6PD) in male mice, suggesting a potential improvement of fertility.[13]

Systematic replenishment of GDF11 improved the survival and morphology of β-cells and improved glucose metabolism in both non genetic and genetic mouse models of type 2 diabetes.[14]

GDF11 triggers a calorie restriction‐like phenotype without affecting appetite or GDF15 levels in the blood, restores the insulin/IGF‐1 signaling pathway, and stimulates adiponectin secretion from white adipose tissue by direct action on adipocytes, while repairing neurogenesis in the aged brain.[15]

GDF11 gene transfer alleviates HFD-induced obesity, hyperglycemia, insulin resistance, and fatty liver development. In obese and STZ-induced diabetic mice, GDF11 gene transfer restores glucose metabolism and improves insulin resistance.[16]

Circulating Concentrations of GDF11 are Positively Associated with Thyroid Stimulating Hormone Levels in Humans [17]

GDF11 enhances therapeutic efficacy of mesenchymal stem cells for myocardial Infarction. This novel role of GDF11 may be used for a new approach of stem cell therapy for myocardial infarction.[18]

GDF11 improves endothelial dysfunction, decreases endothelial apoptosis, and reduces inflammation, consequently decreases atherosclerotic plaques area in apolipoprotein E−/− mice.[19]

GDF11 attenuates liver fibrosis via expansion of liver progenitor cells. The protective role of GDF11 during liver fibrosis and suggest a potential application of GDF11 for the treatment of chronic liver disease.[20]

GDF11 is a regulator of skin biology and has significant effects on the production of procollagen I and hyaluronic acid. GDF11 also activates the Smad2/3 phosphorylation pathway in skin endothelial cells and improves skin vasculature.[21]

GDF11 exerts considerable anti-aging effects on skin. As the key member of the TGF-Beta superfamily, GDF11 represents a promising therapeutic agent for the treatment of a number of inflammatory skin diseases, including psoriasis.[22]

This GDF11 paper summarizes GDF11 expression in various organs as well as a table showing effects of GDF11 in cardiac, muscle skeletal and nervous system disease.[23]

Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity.[24]

Treatment of old mice to restore GDF11 to youthful levels recapitulated the effects of parabiosis and reversed age-related hypertrophy, revealing a therapeutic opportunity for cardiac aging.[25]

GDF11 has been found to reduce oxidative stress and was able to reduce the levels of AGEs, protein oxidation and lipid peroxidation, and to slow down the accumulation of age-related histological markers. GDF11 significantly prevented the decrease in CAT, GPX and SOD activities,[26]

Enhanced GDF11 expression promoted apoptosis and down-regulated GDF11 expression inhibited apoptosis in pancreatic cancer cell lines. These findings suggested that GDF11 acted as a tumor suppressor for pancreatic cancer.[27]

GDF11 induces tumor suppressive properties in human hepatocellular carcinoma-derived cells, Huh7 and Hep3B cell lines, restricting spheroid formation and clonogenic capacity, an effect that is also observed in other liver cancer cell lines (SNU-182, Hepa1-6, and HepG2), decreasing proliferation, motogenesis, and invasion. Similarly, Bajikar et al. (23) identified a tumor-suppressive role of GDF11 in a triple-negative breast cancer (TNBC).[28]

It has been reported that GDF11 is down-regulated in pancreatic cancer tissue, compared with surrounding tissue, and pancreatic cell lines exhibit a low expression of the growth factor (65). This group also reported that, in a cohort of 63 PC patients, those with high GDF11 expression had significantly better survival rates in comparison with those with low GDF11 expression. These effects were related to decreased proliferation, migration and invasion, and these observations are in agreement with those reported in HCC and TNBC. GDF11 is also capable of inducing apoptosis in pancreatic cancer cell lines.[28]

However, In 130 patients with colorectal cancer (CRC), the expression of GDF11 was significantly higher compared with normal tissue (56). The classification of the patient cohort in low and high GDF11 expression revealed that those patients with high levels of GDF11 showed a higher frequency of lymph node metastasis, more deaths and lower survival. The study suggests that GDF11 could be a prognostic biomarker in patients with this disease[29]

In 2014, GDF11 was described as a life extension factor in two publications based on the results of a parabiosis experiments with mice [24][30] that were chosen as Science’s scientific breakthrough of the year.[31] Later studies questioned these findings.[32][33][34][35] Researchers disagree on the selectivity of the tests used to measure GDF11 and on the activity of GDF11 from various commercially available sources.[36] The full relationship of GDF11 to aging—and any possible differences in the action of GDF11 in mice, rats, and humans—is unclear and continues to be researched.

Selected literature:

Effect on cardiac and skeletal muscle aging

GDF11 has been identified as a blood circulating factor that has the ability to reverse age-related cardiac hypertrophy in mice. GDF11 gene expression and protein abundance decreases with age, and it shows differential abundance between young and old mice in parabiosis procedures, causing youthful regeneration of cardiomyocytes, a reduction in the brain natriuretic peptide (BNP) and in the atrial natriuretic peptide (ANP). GDF11 also causes an increase in expression of SERCA-2, an enzyme necessary for relaxation during diastolic functions.[12] GDF11 activates the TGF-β pathway in cardiomyocytes derived from pluripotent hematopoietic stem cells and suppresses the phosphorylation of Forkhead (FOX proteins) transcription factors. These effects suggest an “anti-hypertrophic effect”, aiding in the reversal process of age-related hypertrophy, on the cardiomyocytes.[12] In 2014, peripheral supplementation of GDF11 protein (in mice) was shown to ameliorate the age-related dysfunction of skeletal muscle by rescuing the function of aged muscle stem cells. In humans, older males who had been chronically active over their lives show higher concentrations of GDF11 than inactive older men, and the concentration of circulating GDF11 correlated with leg power output when cycling.[35] These results have led to claims that GDF11 may be an anti-aging rejuvenation factor.[11]

These previous findings have been disputed since another publication has demonstrated the contrary, concluding that GDF11 increases with age and has deleterious effects on skeletal muscle regeneration,[17] being a pro-aging factor, with very high levels in some aged individuals. However, in October 2015, a Harvard study showed these contrary results to be the result of a flawed assay that was detecting immunoglobulin and not GDF11. The Harvard study claimed GDF11 does in fact reverse age-related cardiac hypertrophy.[21] However the Harvard study both ignored the GDF11-specific assay that was developed, establishing that GDF11 in mice is undetectable, and that the factor measured was in fact myostatin.[17] Also, the Harvard study combined the measure of GDF11 and GDF8 (myostatin), using a non-specific antibody, further confusing matters.

In 2016 conflicting reviews from different research teams were published concerning the effects of GDF11 on skeletal and cardiac muscle. One of the reviews reported an anti-hypertrophic effect in aging mice, but the other team denied that cardiac hypertrophy occurs in old mice, asserting that GDF11 causes muscle wasting. Both teams agreed that whether GDF11 increases or decreases with age had not been established. A 2017 study found that super-physiological levels of GDF11 induced muscle wasting in the skeletal muscle of mice.


Growth differentiation factor 11 (GDF11) has pronounced effects on skin biology

Growth Differentiation Factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice

Lifelong exercise, but not short-term high-intensity interval training, increases GDF11, a marker of successful aging: a preliminary investigation

DISCLAIMER: for research use only, it is not intended to treat any disease.


There are no reviews yet.

Be the first to review “In stock: Growth Differentiation Factor 11 (GDF11) BMP-11 anti-aging research peptide – 20 mcg”
SuperhumanStore - longevity, dutasteride mesotherapy, NAD+, peptides, Cerebrolysin, exosomes, anti-aging, senolytics
    Your Cart
    Your cart is emptyReturn to Shop